3,491 research outputs found

    Bandwidth selection for kernel estimation in mixed multi-dimensional spaces

    Get PDF
    Kernel estimation techniques, such as mean shift, suffer from one major drawback: the kernel bandwidth selection. The bandwidth can be fixed for all the data set or can vary at each points. Automatic bandwidth selection becomes a real challenge in case of multidimensional heterogeneous features. This paper presents a solution to this problem. It is an extension of \cite{Comaniciu03a} which was based on the fundamental property of normal distributions regarding the bias of the normalized density gradient. The selection is done iteratively for each type of features, by looking for the stability of local bandwidth estimates across a predefined range of bandwidths. A pseudo balloon mean shift filtering and partitioning are introduced. The validity of the method is demonstrated in the context of color image segmentation based on a 5-dimensional space

    Structured sampling and fast reconstruction of smooth graph signals

    Full text link
    This work concerns sampling of smooth signals on arbitrary graphs. We first study a structured sampling strategy for such smooth graph signals that consists of a random selection of few pre-defined groups of nodes. The number of groups to sample to stably embed the set of kk-bandlimited signals is driven by a quantity called the \emph{group} graph cumulative coherence. For some optimised sampling distributions, we show that sampling O(klog⁥(k))O(k\log(k)) groups is always sufficient to stably embed the set of kk-bandlimited signals but that this number can be smaller -- down to O(log⁥(k))O(\log(k)) -- depending on the structure of the groups of nodes. Fast methods to approximate these sampling distributions are detailed. Second, we consider kk-bandlimited signals that are nearly piecewise constant over pre-defined groups of nodes. We show that it is possible to speed up the reconstruction of such signals by reducing drastically the dimension of the vectors to reconstruct. When combined with the proposed structured sampling procedure, we prove that the method provides stable and accurate reconstruction of the original signal. Finally, we present numerical experiments that illustrate our theoretical results and, as an example, show how to combine these methods for interactive object segmentation in an image using superpixels

    ROAM: a Rich Object Appearance Model with Application to Rotoscoping

    Get PDF
    Rotoscoping, the detailed delineation of scene elements through a video shot, is a painstaking task of tremendous importance in professional post-production pipelines. While pixel-wise segmentation techniques can help for this task, professional rotoscoping tools rely on parametric curves that offer the artists a much better interactive control on the definition, editing and manipulation of the segments of interest. Sticking to this prevalent rotoscoping paradigm, we propose a novel framework to capture and track the visual aspect of an arbitrary object in a scene, given a first closed outline of this object. This model combines a collection of local foreground/background appearance models spread along the outline, a global appearance model of the enclosed object and a set of distinctive foreground landmarks. The structure of this rich appearance model allows simple initialization, efficient iterative optimization with exact minimization at each step, and on-line adaptation in videos. We demonstrate qualitatively and quantitatively the merit of this framework through comparisons with tools based on either dynamic segmentation with a closed curve or pixel-wise binary labelling

    Learning a Complete Image Indexing Pipeline

    Full text link
    To work at scale, a complete image indexing system comprises two components: An inverted file index to restrict the actual search to only a subset that should contain most of the items relevant to the query; An approximate distance computation mechanism to rapidly scan these lists. While supervised deep learning has recently enabled improvements to the latter, the former continues to be based on unsupervised clustering in the literature. In this work, we propose a first system that learns both components within a unifying neural framework of structured binary encoding

    Audio style transfer

    Full text link
    'Style transfer' among images has recently emerged as a very active research topic, fuelled by the power of convolution neural networks (CNNs), and has become fast a very popular technology in social media. This paper investigates the analogous problem in the audio domain: How to transfer the style of a reference audio signal to a target audio content? We propose a flexible framework for the task, which uses a sound texture model to extract statistics characterizing the reference audio style, followed by an optimization-based audio texture synthesis to modify the target content. In contrast to mainstream optimization-based visual transfer method, the proposed process is initialized by the target content instead of random noise and the optimized loss is only about texture, not structure. These differences proved key for audio style transfer in our experiments. In order to extract features of interest, we investigate different architectures, whether pre-trained on other tasks, as done in image style transfer, or engineered based on the human auditory system. Experimental results on different types of audio signal confirm the potential of the proposed approach.Comment: ICASSP 2018 - 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Apr 2018, Calgary, France. IEE

    Sketching for Large-Scale Learning of Mixture Models

    Get PDF
    Learning parameters from voluminous data can be prohibitive in terms of memory and computational requirements. We propose a "compressive learning" framework where we estimate model parameters from a sketch of the training data. This sketch is a collection of generalized moments of the underlying probability distribution of the data. It can be computed in a single pass on the training set, and is easily computable on streams or distributed datasets. The proposed framework shares similarities with compressive sensing, which aims at drastically reducing the dimension of high-dimensional signals while preserving the ability to reconstruct them. To perform the estimation task, we derive an iterative algorithm analogous to sparse reconstruction algorithms in the context of linear inverse problems. We exemplify our framework with the compressive estimation of a Gaussian Mixture Model (GMM), providing heuristics on the choice of the sketching procedure and theoretical guarantees of reconstruction. We experimentally show on synthetic data that the proposed algorithm yields results comparable to the classical Expectation-Maximization (EM) technique while requiring significantly less memory and fewer computations when the number of database elements is large. We further demonstrate the potential of the approach on real large-scale data (over 10 8 training samples) for the task of model-based speaker verification. Finally, we draw some connections between the proposed framework and approximate Hilbert space embedding of probability distributions using random features. We show that the proposed sketching operator can be seen as an innovative method to design translation-invariant kernels adapted to the analysis of GMMs. We also use this theoretical framework to derive information preservation guarantees, in the spirit of infinite-dimensional compressive sensing
    • 

    corecore